
The Potential Impact of VHDLD T I (C
Dependable Distributed System Design t[ELECTE

cv,= UG28W
N M. C. McElvany* L

Aerospace Technology Center

Allied-Signal Aerospace Company

Columbia, MD 21045

michelleGbatc.affied.com

Input Outpts

The goal of dependable systems and components is to
provide proper service in the presence of faults. One
design approach is to develop extremely dependable Figure 1: Discrete Process Model
building blocks, using fault avoidance techniques to
decrease generic or design faults. Then, the reliable
system components are combined using fault toler- An alternative approach is to develop extremely de-
ance to create a dependable distributed system. pendable building blocks which, when combined us-The adoption and implementation of a standard pedbeuiinblcswchwenomidu-

Thardwe adeption lan guplemetag in VoL a I sing fault tolerant techniques, can meet the needs of
hardware description language in VHDL (VHSIC a particular application with the desired level of re-
hardware description language) promotes the use of liability. The existing formal theory of dependable
fault avoidance techniques throughout the system de- system design was derived from specific architectures
sign cycle. Descriptive languages such as VHDL also 'which discovered and solved many of the problems
provide a basis for tools which can aid in the specifi- associated with guaranteeing proper system service
cation, design, and validation of both dependable sys- in the presence of faults. These architectures include
tems and their component building blocks. However, SIFT (Software Implemented Fault Tolerance)[2, 3],
integration of VHDL and existing high-level system AIPS (Advanced Information Processing System)[4],
evaluation tools remains a research problem. FTPP (Fault Tolerant Parallel Processor)[5, 6], and

MAFT (Multicomputer Architecture for Fault Toler-
1 Introduction ance) [7, 8], a strong candidate for the next generation

space shuttle engine controller. [9]

The success of the Advanced Tactical Fighter (ATF), One way to specify proper service is to use a textual

the Integrated Airframe/Propulsion Control System or behavioral description of the system or component

Architecture (IAPSA), the PAVE PILLAR architec- functions. Using the discrete process model depicted
ture, and similar high-reliability, high-performance in Figure 1, we can define the types of inputs, the

.1 systems requires the development of dependable com- types of outputs, and provide behavioral, structural
plex real-time computing systems. The dependabil- and data-flow definitions of the internal functions

ity and high-speed performance requirements of life- ad the outputs in terms of the inputs. This inter-

critical systems cannot be achieved merely by using nal description can then be partitioned into subpro-
1 distributed processing and faster processors; depend- cesses until the desired level of complexity is reached.

ability requires the systems to tolerate faults.' Con- Hardware description languages support this design

i 3sequently, most real-time control systems to date use paradigm.

dedicated computing systems which cannot support We believe that the adoption of a standard hard-
other applications. ware description language in IEEE Standard 1076,

specifically VHDL (VHSIC hardware description lan-
*Supported by ONR Contract # N00014-91-C-0014 guage) (10], promotes the use of fault avoidance tech-
'fA faul is an anomalous physical condition, the identified niques throughout the system design cycle, not just

or hypothesised cause of an er.o, which may eventually lead
to a failure, a los, of service. Note that a single fault can cause in the design of hardware components, and may de-
many error,.1} crease generic (design) faults. Descriptive languages

91 5 041 91-06865

such as VHDL also provide a basis for tools which Several stages of testing and redesign may also be

can aid the specification, design, and validation of necessary throughout this process, requiring several

both dependable systems and their component build- generations of specifications document corrections.

ing blocks. Integration usually occurs after the programs are

After an overview of the design and development written, tested, and shown to meet their DCS, and

process used in current systems, the relevant goals after the ASIC's have been designed, simulated and

and features of VHDL are be summarized. Next, fabricated. Successful integration may require an-

we address the effect of VHDL on fault avoidance other round of specifications document corrections,

throughout the design process. Following our insights to achieve the "final" versions of SRS1 , SDS1, HDS1 ,

into the potential uses of VHDL in dependable system and DCS1 for all components.

and component specification, design, and validation, There is no guarantee that all problems in the spec-

we conclude with a discussion of issues which must ifications at various stages will be discovered, or that

be addressed to achieve this potential. the system as integrated achieves the goals of the orig-

inal system specifier (the customer), without thor-

2 Current Design Process ough testing. Furthermore, the translation from an
idea to natural language4 design specifications, then

The first step in the typical system design process to a design, back to natural language hardware and

is a System Requirements and Specifications docu- software specifications, or DCS, and then into pro-

ment (SRS), which defines the boundaries of the ser- grams and ASIC's can permit mistakes to creep in
vice required by the target system, including param- due to the inherent difficulties in writing and inter-

eters such as throughput, reliability, maintainability, preting natural language text.

availability, and the number and types of faults to be

tolerated. 2 Using the SRS, the systems designers de-

velop candidate architectures and evaluate them us- 3 Features of VHDL
ing either their own criteria, or criteria supplied in

the SRS. Various high-level system design tools may While the most common use of the VHDL design en-

be used to evaluate key system characteristics of per- vironment has been in design capture and simulation,

formance, reliability, fault coverage, failure modes, or it also supports the creation of a design from the

environmental impact. Any incomplete, impossible, specification to the completed product. Important

or contradictory specifications in the SRS detected at features of VHDL are listed in Table 1, presented in

this stage should result in an updated SRS, referred detail in [10], and summarized below.

to as SRS'. However, existing erroneous specifica-

tions may not be detected at this stage of the design Executable documentation. One of the goals

process. in designing VHDL was to minimize the amount

The result of the previous analysis is a set of doc- of documentation required to specify and describe

uments which specifies a design that satisfies the the hardware components that were designed, imple-

SRS'. This set may include specifications documents mented and fabricated. Often, the replacement of a

for software (SDS) and hardware (HDS) components, single component can be made impossible, because

which in turn must be evaluated by the hardware and thne p definition of the behavior of that com-

software designers using their own evaluation tools. peis ipli by the enaion ot tated
Simiarl, ay eronousspecfictios i th SD or ponent is implied by the documentation, not stated

Similarly, any erroneous specifications in the SDS or explicitly. In fact, VHDL, has been referred to as

HDS documents detected at this time should result "executable documentation," 5 permitting the design

in modifications at the appropriate levels to create description to be used as input to a simulator or to

new documents SRS", SDS', and HDS'. As before, another compatible design tool. In VHDL, the doc-

there is no guarantee that all defects in these docu- umentation is embedded in the models themselves,

ments will be detected, nor that the creation of new in the form ofsignal, architectural, behavioral, data-

versions will not introduce new defects. flow and structural specifications. Thus, all the in-

Eventually, a set of Design Control Specifications formation required to understand a component, its

documents (DCS) is produced which detail the pro- behavior, and its interaction with other components

grams, components, and ASIC's3 to be designed. is present in the component model.

2 The deqign process described is a simplification of tech-

niques presented throughout the literature, and is not taken Natural language refers to the spoken or written language,

from any specific system or developer, in this case, written English.
3 ASIC-application specific integrated circuit. sp. 46, (111.R

2

Strong data typing. The data typing used in e Embedded documentation

VHDL requires signals to be of the same type to be e Strong data typing

combined, and .equires input and output ports that * Top-down specification

are connected either to share a specification or to have a Multi-level simulation

an explicit converter in between them. This strong 9 Module reuse

data typing requirement catches many common de-

sign mistakes, and forces the development of design

rules to ensure that components produced by differ- Table 1: Important VHDL Features

ent vendors or different engineers are compatible.

4 Fault Avoidance and VHDL
Top-down specification. The basic component

paradigm used in VHDL is the discrete process model Much research has been devoted to the study of how

shown in Figure 1. The internal parameters of the to tolerate faults, with redundancy at the hardware,

process description need not be specified, only the software, and information levels used to mask, detect,

outputs generated by specific inputs. The functional and correct faults. [1] Such redundancy is sufficient

details due to a given implementation or technology to handle restricted fault behaviors, such as single

may be specified later, may be obtained from another faults that are well separated in time. However, the

vendor or designer, or may never be specified. Such problem of handling generic or design faults remains,

top-down specification is useful in defining how sys- as demonstrated in the following example.

tem components interact early in the design, instead

of requiring all details to be intact before anything in Example 1 Suppose three identical chips perform

the system can be simulated. Behavioral, data-flow the same operation, with the results voted to yield

and structural models are supported, giving the de- a single result. Any fault in a single chip is tolerated,

signer latitude in specifying functionality. Thus, the because the results from the remaining good chips

behavior of a component can be specified and simu- will out-vote and mask the bad chip's result. How-

lated, with the gate-level design generated after the ever, the presence of a generic fault in the chip could

inter-component structural information has been vet- cause all three chips to fail simultaneously. An incor-

ified. rect value (or even no value) could be computed, and
system failure could result. 0

Multi-level simulation. The multi-level simu- Fault avoidance techniques, such as design rules,

lation supported by VHDL permits the system or careful parts selection, and critical design reviews

component functions to be simulated with the dif- must be used throughout the design process to min-

ferent processes specified at different levels of detail. imise the number of specification, implementation

Both high level and detailed component models can and fabrication mistakes which are propagated into

be mixed in the same simulation. Thus, simulation of the final product. The design strategy supported

the model can be done throughout the design process, by VHDL, properly implemented, can provide fault

to ens'ire that the desired parameters are maintained avoidance techniques at all stages in the design of

following each level of expansion. All parts of a given system components. For example, the strong data

model can be integrated before any hardware is fab- typing prevents inadvertent connection of ports or

ricated, eliminating the difficulty faced in testing and components with incompatible signals. Component

integrating simultaneously. functions can be described and functional test vec-
tors can be derived at high levels, independent of the

technology to be used in their fabrication. The re-

Module reuse. VHDL also supports module suiting behavioral models can be simulated at differ-

reuse, where libraries of components can be main- ent design levels, with multiple levels of simulation in

tained based on certain technologies or design rules. the same design, to continually demonstrate that the

The same process model can be simulated using sev- design specifications are met. Furthermore, VHDL

eral libraries, even from different vendors. The com- supports module reuse and the development of a val-

pilation of libraries of reliable validated components idated library of parts, providing significant cost ben-

is a key to the development of dependable system efits.

building blocks because it permits component relia- While the need for reliable system components

bility to be maximised while minimising the cost of is not new, the use of fault avoidance techniques
new systems through module reuse. throughout the component design cycle is required

to ensure the success of future dependable systems. at the system level, they will not incorporate the eval-

However, VHDL is difficult for many designers to uation tools used by the systems designers, such as re-

learn, and complex timing behavior cannot be mod- liability and performance modeling tools. In a design
eled easily in VHDL. Thus, user-friendly VHDL de- environment supported by such an integrated tool set,

sign aids need to be developed and the difficulty in the reliability or performance needed in a component

performing timing simulations in VHDL needs to be specified by only its inputs and outputs, can be corn-

resolved to achieve this goal. puted based on the required system characteristics
and on the characteristics of other components al-
ready designed or selected. This gives the designer a

5 VHDL and the System De- guide as to the level of redundancy needed to meet the
sign Process component characteristics, preventing the expense of

over-design and the hazards of under-design.

The high level of abstraction and the multiple levels
of structural and behavioral specifications supported 5.3 Validation
by VHDL can also provide benefits in specifying, de-

signing, evaluating and validating dependable system The largest benefit to be achieved by the adoption

designs. However, these benefits require VHDL to be of VHDL at all levels of system design is in enabling

implemented as a descriptive language within an ap- validation of the system by providing traceability to
propriate tool set which includes reliability and per- the original specifications document (SRS) in every

formance modeling tools. model component. Since the documentation is con-
tained in each component or subsystem, the adher-
ence to individual specifications is maintained as a

5.1 Specification part of the system model.

The ability to specify systems precisely is limited by For example, the required fault coverage can be
the lack of precision of natural language text. The de- traced at a high level in the design to validate the

signer may not interpret the requirements as the cus- correspondence of different candidate architectures to
tomer meant them, the component functions may not the SRS. A simple example is shown below, which
be fully specified, or the specifications taken together employs an enumerated data type to discern between

may have unforseen effects. The specification of por- good and bad inputs. This type of validation could

tions of a design using a descriptive language such be done initially, and repeated as different levels of
as VHDL removes the ambiguity inherent in natural the design are expanded.
language specifications while retaining its specificity.
Furthermore, missing specifications may become ap- Example 2 A simple VHDL behavioral description
parent more quickly as the structure and behavior of of the 3-input voter required by Example 1 demon-
components are expanded to different levels. strates some features of VHDL at a high level. Using

the sample process model depicted in Figure 1, we

5.2 Design and Evaluation can define the type of inputs and the type of out-
put expected, and specify the behavior of the voter

The use of VHDL in design synthesis permits impor- based on the inputs and other information. The voter
tant issues, such as protection against different types model requires three inputs, and produces one out-

of faults, to drive the design. Abstract data objects put. If any two of the three inputs are good, the

can indicate how faults are handled by various design output value should be good; otherwise, the output
components. The simultaneous support of top-down is bad. The enumerated data type {bad, good} can
and bottom-up design permits existing dependable be used to represent all possible values of the inputs
components to be specified as portions of functions and the output. Then, the voting function can be
described otherwise only by their inputs and outputs. described by counting the number of good entries. If

Once a VHDL model of the system or component there are two or more good entries, then the output

being designed has ben written, it can be executed receives the value good. Otherwise, the output value
with differing inputs to verify that the system meets is bad. VHDL captures the voter behavior and shows

its specifications. Faults can be inserted in the model, that all possible input values, really high-level test

and the fault protection can be demonstrated. The vectors, produce the desired output result. Even if

synthesis and fault-simulation tools currently being the actual values to be voted are bytes of information,
developed are aimed at ASIC design and testing, not requiring more complex comparisons, the coverage of

at the system level. While these tools will also apply the single input fault can be demonstrated without

designing a byte comparator. A VHDL representa-
tion of this example is shown in Figure 2.0 -Type dual-mode-logic, enumerated data type

-used to discern
Validation is further aided by the ability to model -between good and faulty inputs

the integrated system at design time. The integration -- can also be converted to another type for
of different portions of the system before hardware -other simulations
is even built replaces the nightmare of redesigning type dual-mode-logic is ('bad','good')
hardware to adhere to the specifications. Integrated
hardware and software models are mapped back to -Entity vote3 is a 3 input voter with a Ins
the original SRS, using techniques that can poten- -delay which
tially detect design mistakes before they have been -tolerates a fault in a single input,
implemented in hardware, and perhaps masked by -either an incorrect value or no value
other mistakes. entityvote3 is

generic(tplh,tphl:time :- 1 ns);
6 Conclusion port(a,b,c: in dual-mode-logic;

d : out dual-modeJogic);

The use of VHDL in hardware component design has end vote3;

the potential to decrease generic faults by permitting architecture behave of vote3 is
the development of verified libraries of dependable begin
components. The adoption of VHDL as a standard, d <= 'good' after tplh when (a = 'good')
and the multitude of tools being developed and mar- and (b = 'good')
keted to support ASIC design, such as synthesizers, else
fault and timing simulators, and design optimizers, d es 'good'after tplh when(a = 'good')
will aid in achieving this potential. Graphics pack- and (c = 'good')
ages which automatically generate the VHDL code, else
and sophisticated debuggers which provide access to else
all states in a component or chip at a given time wadi (= 'good')
also help to deter and remove design errors. These else
benefits should be the first to appear. d <= 'bad' after tphl;

While the tools and techniques described support end;
system design in VHDL from specification down to
gate-level, they will not be sufficient to replace the
evaluation and redesign cycles, described in Section 2,
used to generate the hardware and software specifi-
cations documents. VHDL will need to be imple- Figure 2: Three Input Voter ii VHDL
mented within a tool set vastly different from those
used in designing and implementing ASIC's. Relia-
bility modeling tools will have to be integrated with techniques needed to produce dependable systems are
VHDL constructs. Tools to estimate the probabilities developed.

of faults within different components or subsystems
will be needed. This presents a considerable research References
problem,. especially since there is no "standard" reli-
ability modeling tool that works for all architectures. [1] B. W. Johnson, De3'gn and Analysis of Fault-

The potential exists to develop a formal method- T oson Ses. A n-ley Pub-
ology of dependable system design in a VHDL-based leshn Cigmtan 19 89.
environment, using a top-down approach, with a sin- lishing Company, 1989.
gle natural language specifications document. This [21 J. WVensley et at., "SIFT: Design and analysis of
design process would employ fault avoidance tech- a fault-tolerant computer for aircraft centrol,"
niques to limit the propagation of design mistakes, Proceedings of the IEEE, vol. 66, October 1978.
while supporting fault tolerance techniques to main-
tain proper service in the presence of faults due to [31 J. Goldberg et al., "Development and analy-
component wear-out, incorrect use, or environmental sis of the software implemented fault-tolerance
factors. However, this potential will not be achieved (SIFT) computer," NASA contract, Final Re-
unless the matnre VHDL tools and the formal design port NASA-CR-172146, NASA, February 1984.

S _ _ _ _ __ _ _ _ _ __ _ _ _ _

[41 J. ff. Lala, R. E. Harper, and L. S. Alger, "A
design approach for ultrareliable real-time sys-
tems," Computer, vol. 24, pp. 12-24, May 1991.

51 C. A. Babikyan, "The fault tolerant pa:allel
processor operating system concepts and perfor-
mance measurement overview," in Proceedings,
Digital Avionics Systems Conference, pp. 366-

371, IEEE Computer Society, August 1990.

'61 R. E. Harper Critical Issues in Ultra-Reliable

Parallel Processing. PhD thesis, Massachusetts
Institute of Technology, Charles Stark Draper

Laboratory, Inc., June 1987.

17] C. Walter, R. Kieckhafer, and A. Finn, "MAFT:
A multicomputer architecture for fault-tolerance
in real-time control systems," in Proceedings,
IEEE Real- Time Systems Symposium, pp. 133-
140, IEEE, December 1985.

18] R. Kieckhafer, C. Walter, A. Finn, and P. Tham-
bidurai, "The MAFT architecture for distributed
fault tolerance," IEEE Transactions on Comput-
ers, vol. C-37, pp. 398-405, April 1988.

(91 R. Taylor, P. VanHoff, and C. Walter, "A flexible
fault-tolearnt processor for launch vehicle avion-
ics systems," in Proceedings, 9th Digital A Vion-
ics Systems Conference, pp. 147-152, August
1990.

[10] R. Lipsett, C. Schaefer, and C. Ussery, VHDL:
Hardware Description and Design. Boston, MS:
Kluwer Academic Publishers, first ed., 1989.

ill] L. Gunn, "VHDL: an EDA standard slowly
emerges," Electronic Design, pp. 45-61, March
1990.

Accession For

NTIS GRA&I
DTIC TAB 0

Statement A per telecon D
Gary M. Koob ONR/Code 1133

Arlington, VA 22217-5000 AvalibI1 ty CodeS
I A'i11 &.:id/or

Dist
NWW 8/22/91

